

	Name: ()
Chem!stry	Class:	

Date: / /

Thermometric Titration

Question:

A student investigated the rise in temperature when sulfuric acid was added to a solution containing 1.00 mol/dm³ sodium hydroxide, using the apparatus shown below:

20.0 cm³ of 1.00 mol/dm³ sodium hydroxide was poured into a beaker. The initial temperature (T_i) of both this solution and the sulfuric acid was 25.0°C.

Next, 5.0 cm³ of sulfuric acid was added to the aqueous sodium hydroxide from the burette. The reaction mixture was stirred gently and the maximum temperature (T_m) was taken. Following successive additions of 5.0 cm³ volumes of sulfuric acid from the burette, further temperature readings (T_m) were taken.

The diagrams below show parts of the thermometer stem giving the temperature after the addition of 5.0, 15.0 and 25.0 cm³ of sulfuric acid.

a) i) Use the diagrams to complete the following table of results.

[1]

ii) Calculate the change in temperature $(T_m - T_i)$ for each 5.0 cm³ volume of sulfuric acid added to the aqueous sodium hydroxide. Complete this on the table of results.

[1]

Volume of Sulfuric Acid / cm ³	Maximum Temperature T _m / °C	Change in Temperature $T_m - T_i / {}^{\circ}C$
5.0		
10.0	29.0	
15.0		
20.0	33.0	
25.0		
30.0	29.0	
35.0	26.0	

b) Plot the change in temperature, $T_m - T_i$ against volume of sulfuric acid on the grid below. Connect the points with **two** intersecting straight lines.

[3]

Use the graph to answer the following questions.

c) State the change in temperature at the intersection of the two lines.

.....°C

ii) What volume of sulfuric acid produced this temperature?

..... cm³

[2]

- d) 20.0 cm³ of 1.00 mol/dm³ sodium hydroxide was used in the experiment.
 - i) Write an equation for the reaction between sodium hydroxide and sulfuric acid.

[1]

	mol/dm³
	[2]
e)	Use the formula given below to calculate the enthalpy change of this reaction to three significant figures.
	$\Delta H = m \times c \times \Delta T$
	$\Delta H = enthalpy change / J$
	m = mass of solution / g
	c = specific heat capacity of water = 4.18 J/g/°C
	ΔT change in temperature / °C
	Note: Assume the density of the solution = 1.00 g/cm ³
	J
	[3]
. \	
f)	After the highest temperature was reached, explain why the temperature of the solution
	decreased as more sulfuric acid was added.
	[2]
	[-]
g)	Identify a possible source of error for this experiment and clearly state how the error affects
. ,	the results of the experiment.
	·
	[2]
	[Total: 17]

Using your answer to **c) ii)**, calculate the concentration of the sulfuric acid.

ii)

• Scan the QR Code below for the answers to this assignment.

http://www.chemist.sg/energy_changes/thermometric_titration_ans.pdf